53 research outputs found

    Lights, Camera, Action! Exploring Effects of Visual Distractions on Completion of Security Tasks

    Full text link
    Human errors in performing security-critical tasks are typically blamed on the complexity of those tasks. However, such errors can also occur because of (possibly unexpected) sensory distractions. A sensory distraction that produces negative effects can be abused by the adversary that controls the environment. Meanwhile, a distraction with positive effects can be artificially introduced to improve user performance. The goal of this work is to explore the effects of visual stimuli on the performance of security-critical tasks. To this end, we experimented with a large number of subjects who were exposed to a range of unexpected visual stimuli while attempting to perform Bluetooth Pairing. Our results clearly demonstrate substantially increased task completion times and markedly lower task success rates. These negative effects are noteworthy, especially, when contrasted with prior results on audio distractions which had positive effects on performance of similar tasks. Experiments were conducted in a novel (fully automated and completely unattended) experimental environment. This yielded more uniform experiments, better scalability and significantly lower financial and logistical burdens. We discuss this experience, including benefits and limitations of the unattended automated experiment paradigm

    Assessing Implicit Odor Localization in Humans Using a Cross-Modal Spatial Cueing Paradigm

    Get PDF
    Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal.A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment.No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research.The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans

    A Low Concentration of Ethanol Impairs Learning but Not Motor and Sensory Behavior in Drosophila Larvae

    Get PDF
    Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects

    Dose-related effects of alcohol on cognitive functioning

    Get PDF
    We assessed the suitability of six applied tests of cognitive functioning to provide a single marker for dose-related alcohol intoxication. Numerous studies have demonstrated that alcohol has a deleterious effect on specific areas of cognitive processing but few have compared the effects of alcohol across a wide range of different cognitive processes. Adult participants (N = 56, 32 males, 24 females aged 18–45 years) were randomized to control or alcohol treatments within a mixed design experiment involving multiple-dosages at approximately one hour intervals (attained mean blood alcohol concentrations (BACs) of 0.00, 0.048, 0.082 and 0.10%), employing a battery of six psychometric tests; the Useful Field of View test (UFOV; processing speed together with directed attention); the Self-Ordered Pointing Task (SOPT; working memory); Inspection Time (IT; speed of processing independent from motor responding); the Traveling Salesperson Problem (TSP; strategic optimization); the Sustained Attention to Response Task (SART; vigilance, response inhibition and psychomotor function); and the Trail-Making Test(TMT; cognitive flexibility and psychomotor function). Results demonstrated that impairment is not uniform across different domains of cognitive processing and that both the size of the alcohol effect and the magnitude of effect change across different dose levels are quantitatively different for different cognitive processes. Only IT met the criteria for a marker for wide-spread application: reliable dose-related decline in a basic process as a function of rising BAC level and easy to use non-invasive task properties.Mathew J. Dry, Nicholas R. Burns, Ted Nettelbeck, Aaron L. Farquharson and Jason M. Whit

    Attention

    No full text
    • …
    corecore